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Consistent, linear phenological
shifts across a century of
observations in South Korea

Shifts in the timing of spring flowering events are recognized as one
of the clearest and most sensitive ecological indicators of climate
change (Pau et al., 2011). Numerous efforts are under way to track
yearly variation in flowering phenology (Crimmins et al., 2017;
Templ et al., 2018), but most ongoing studies began in the last few
decades and so lack data on phenology before the onset of
anthropogenic climate change. Such studies typically calculate
phenological sensitivity as the linear relationship between flowering
time and temperature, but there is emerging uncertainty as to
whether plants may be reaching the limit of their ability to track
temperature (Iler et al., 2013; Wolkovich et al., 2021). If they are
reaching this limit, wewould expect to see either nonlinearities (e.g.
asymptotes) in phenological sensitivity (Pope et al., 2013) or
increased variability (or a lack of predictability) in comparison with
what were once tight, strong relationships (Pearse et al., 2017).
Indeed, some have suggested that drivers such as winter chilling and
photoperiod will become more prominent in cueing flowering as
spring temperatures become less limiting (Cook et al., 2012). To
gain an understanding of whether climate change is resulting in
different patterns of phenological response, we need to compare
recent shifts to historical baseline data from before the onset of
rapid anthropogenic climate change.

The Korean Meteorological Agency (KMA) has been recording
data on spring flowering time (date of first flower) for seven woody
plant species – pear (Pyrus communis), Yoshino cherry (Prunus
yedoensis), Korean forsythia (Forsythia koreana), black locust
(Robinia pseudoacacia), peach (Prunus persica), Korean azalea
(Rhododendron mucronulatum), and Japanese apricot (Prunus
mume) – for 100 yr as of 2022, making it, to our knowledge, the
longest continuously running phenological monitoring effort in
Asia (Ib�a~nez et al., 2010; Fig. 1). This centennial study offers a
unique opportunity to compare phenological trends before and
after the onset of rapid climate change. The extremity of recent
phenology is stark: during this 10th decade of study, the record for
the highest average annual temperaturewas broken six times and, in
2021 alone, species at nine of the 72 sites exhibited the earliest
flowering phenology ever recorded. Overall, species flowered an
average 4.1 d earlier for every 1°Cofwarming, and asmuch as 5.5 d
earlier in the case of apricots (Fig. 2; but see also Supporting
Information Figs S2, S3; model results given in Notes S1). Spring
temperature explained the highest amount of variation in flower-
ing, at least twice as much as any other factor, with significant
contributions from latitude and whether the site was coastal or

inland. Partitioning variation in temperature and rainfall across
locations, on average through time across all locations, and across
years within sites (sensuDaru et al., 2019),made no impact on these
findings (see Notes S2 and the Materials and Methods section).
However, these analyses did reveal that variation among sites was
the dominant driver of variation in phenology, followed by
variation through time across South Korea – leaving site-specific
variation as the weakest driver of phenology. But this still leaves
open the question as to whether spring temperature sensitivity has
changed over time in response to accelerated warming.

We evaluated these data with two criteria that could indicate
shifting sensitivity to spring temperature: nonlinearity in trends
and increased interannual variability around the mean trend.
Regarding linearity, we found that while models were best fit by
quadratic and cubic phenology-to-temperature functions for most
species, their gains in predictive abilitywere small, suggesting a high
degree of fidelity with linear functions. Averaged across all species,
quadratic and cubic models explained < 2% more variation than
linear models. At most, the error associated with the sensitivity
prediction was reduced by only 0.03 d (for forsythia).We found no
evidence that an exponential decay response curve was more
appropriate than a simple linear fit for any species. Thus, we find
little evidence to suggest that the capacity for flowering phenology
to respond to spring temperature is saturating in this system (all
models given in Notes S3). There are, of course, hard physiological
limits to many aspects of plant physiology, and as such there is no
reason to suppose that these species will be able to track shifting
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Fig. 1 Korea Meteorological Agency weather station locations used in this
study, with point color indicating the year of first observation. Background
colors indicate elevation (m above sea level (asl)). Sites that were designated
as ‘coastal’ are plotted as circles, and ‘inland’ sites are plotted as triangles.
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climate forever, merely that they have not reached their limit of
plasticity yet. We do also note that most species show a greater
magnitude of response to yearly temperature post-2010 when
climate change has been more intense. These trends are so small as
to have limited impact on overall model fit (mean, additive increase
in r2 of 0.61% across all species; seeNotes S4). This is notable given
that we would expect species to respond more weakly to climate as
they approached their response limits; we see, if anything, an
increase in responsiveness.

Wenext quantified the degree towhich interannual phenological
variability changed over time. If climate change were disrupting the
ability of species to track environmental variability through
phenological plasticity, we might expect to see increases in
interannual variability. This could occur if flowering were to be
decoupled from spring temperature through sensitivity saturation,
with other factors becoming the dominant drivers (Meng
et al., 2021). We thus explicitly modeled changes in phenological
variance over time as a function of spring temperatures to test for
changes in predictability. All but one species (cherry) tended to
become, if anything, slightly less variable in their interannual
phenology over time. Of these, four (forsythia, apricot, black
locust, and rhododendron) showed strong evidence (Bayesian
P > 95% for estimated slope of r2) that this reduction in variance
over time was statistically significant, though we note that these
variance reductions are very small when compared to the
magnitudes of mean shifts (the greatest shift is in plums, which
also have the greatest variance overall; seeNotes S5). Further, five of
the seven species (excepting cherry and pear) showed extremely
modest (albeit statistically significant) evidence of reductions in
variance in warmer years (model results given in Notes S6),
suggesting that the reductions in variance over time are not simply a
product of shifting temperature variance. These findings indicate
that interannual phenological variation has not become more
variable and any increase is so small as to be biologically irrelevant.

This is in keeping with studies with greater taxonomic and
geographic effects on phenology but more limited temporal extent
(Stemkovski et al., 2023).

Combined, these two lines of evidence suggest that phenological
sensitivity of woody plants in Asia has not significantly changed
over the past century. Indeed, it suggests that had scientists in 1971
used the first 50 yr of data to predict phenology in 2021, their
predictions would have been highly accurate. To quantify this, we
modeled the degree to which predictability has changed since the
onset of climate change by comparing the predictive accuracy of
models trainedwith the first 50 yr and themost recent 50 yr of data.
A simple linear model containing only one term – average spring
temperature – when fit to data from 1921 to 1971, predicts the
observed phenology from 1972 to 2021 with an average error of
7.3 d across all species (lowest RMSE is 4.4 d for cherries and
highest 13.1 d for apricots).On the contrary, the samemodel,when
fit using themost recent 50 yr, had only slightly higher accuracy for
all species, with an average error of 6.6 d: a 6.4% improvement.
Thus, scientists in 1971 could have made very good predictions of
shifts in phenology that would have been accurate for the next 50 yr
(full model results given in Notes S7). Of course, we must temper
this observation by remembering that this dataset, while almost
unprecedented in temporal scale, is of only seven species – all of
which are trees and shrubs – and so we caution against generalizing
our findings to other taxa. We note, however, that other studies of
more taxa (790 plants, 168 birds, and 79 insects; Stemkovski
et al., 2023) and that extends back further in time (1852–2007,
albeit not measured each year; Willis et al., 2008) find similar
patterns. Datasets exist with longer time periods that could be used
for additional tests but, we caution, they are not as standardized,
making it difficult to accurately test constancy of responses through
time (Christidis et al., 2022).

These results provide three critical insights for modern climate
change research. The first is confirmatory but sometimes

Fig. 2 Date of first flower is consistently dominated by temperature across species. Points represent observations from the second half of the dataset (1971–
2020), and the lines representmodelsfit to thefirst half of thedataset (1920–1970).All sevenspecies’ dateoffirst flower is plottedagainst temperature (meanof
February–March). Full model summary statistics are given in the Supporting Information, including direct comparisons of the predictive power of temperature
vs other factors (Fig. S1). Notably, all species’ responses are strongly, linearly correlated with temperature, opening earlier in warmer years.
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overlooked: historic records form an important baseline against
which contemporary change must be measured to avoid the
problem of shifting baselines (Pearse et al., 2017). Second, while
climate is shifting in unprecedented ways that are challenging to
model and forecast, the biological responses to these changes may
still be linear andpredictable based on existing data.Third,we stress
that even these linear phenological responses may still have
complex, nonlinear, and multifaceted ecological consequences. All
species adjust their phenology in response to temperature variation,
but their sensitivities differ from one another (note the variation in
slopes in Fig. 2). For every 1°C of warming, black locust flowering
advances by 3.3 d, but apricot advances by 5.5 d. Even subtle, linear
differences in species sensitivities have the potential to fundamen-
tally reorder phenological relationships and vulnerability to frost
and drought and profoundly affect ecological interactions and
function. This may occur long before species reach hard
physiological limits on flowering plasticity. Still, our results suggest
that currently-available data hold the key to predicting the future
consequences of shifts in flowering phenology.

Materials and Methods

We analyzed changes in predictability of flowering time in seven
species from a 100-yr dataset collected by theKoreaMeteorological
Administration. We describe the data processing and collection
briefly due to its long record period and because it is given in more
detail elsewhere, and describe the analyses in full detail. All
reproducible analysis codes are released in the Notes S8; the data
were not collected by us and are housed with the Korea
Meteorological Agency (KMA) but are also available in Notes S9.

Data collection

We used data gathered by the Weather Service of the Republic of
Korea on the first flowering date of Forsythia koreana (Korean
forsythia),Prunus mume (Japanese apricot),Pyrus communis (pear),
Prunus9 yedoensis (Yoshino cherry), Prunus persica (peach),
Robinia pseudoacacia (black locust), and Rhododendron mucronu-
latum (Korean rhododendron) at 74 weather stations distributed
across the country, with some weather stations starting in 1921
(data available fromKoreaMeteorological Administration, https://
data.kma.go.kr/data/seasonObs/seasonObsDataList.do?pgmNo=
648; Fig. 1; Ib�a~nez et al., 2010). Monitoring at other weather
stations started later, and not all stations have operated
continuously. Temperatures have risen across the country over
the study period, with greater temperature increases in areas with
larger human populations (Primack et al., 2009). These data have
been extensively used to investigate how species are changing their
phenology over time and in response to annual variation in
temperature (Lee et al., 2011; Ellwood et al., 2012; Kim et al.,
2021). However, we emphasize that while our dataset spans a large
number of sites and years, it is of only seven species and all of those
species are trees and shrubs (and not, for example, understory
plants, or even animals). This taxonomic and functional-grouping
limitation is important and should be borne in mind when
considering the broader implications of this study.

Observations were made on plants growing in phenological
gardens on the grounds of each weather station. All plants used in
this study were obtained from stock maintained and distributed by
the Weather Service of the Republic of Korea to maintain genetic
uniformity. When plants died or were not healthy, they were
replaced by new plants. To minimize the effects of plant aging, the
plants in the phenological garden have been replaced at regular
intervals of between 15 and 25 yr throughout the study. Surface air
temperature data have been available continuously from as early as
October 1907 (city of Seoul), and records at some stations were
missing during the Korean War of 1950–1953. The phenological
observations were made by weather station employees according to
precise written instructions that have remained constant for the
entire study. First floweringwas recordedwhen at least three flowers
were open on a plant.

Statistical analysis

Our analysis was split into five main components: (1) quantifying
the drivers of phenological change; (2) assessing changes in forecast
skill in recent decades; (3) testing for nonlinearity in phenological
responses; (4) estimating the predictability of phenology over time
and inwarmer years; and (5) partitioning responses into among-site,
among-year, and individuals’ plastic in situ adaptation/responses.
(1) We chose six predictor variables to explain interannual
variation in first flowering phenology: spring temperatures (mean
over February and March), spring precipitation (mean over
February and March), regional population (https://jumin.mois.
go.kr/index.jsp#), elevation, latitude, and whether the station was
inland or coastal (as defined by our knowledge of the region and
detailed in Notes S10). Coastal sites are port cities at sea level with
an oceanic influence on climate (never > 15 km from the ocean).
Inland sites are at higher elevations, not at port cities, and with a
climate not strongly influenced by the ocean. We used means over
February and March after exploratory analysis revealed that these
were the most strongly predictive regions and also to match
previous work (e.g. Primack et al., 2009). While temperature
sensitivity is often calculated using degree-day models, we follow
similar studies interested in variance shifts through time (notably
Stemkovski et al., 2023, who further justify this approach) in order
to ensure comparability among studies. All continuous predictor
variables were centered to have means of 0 and SDs of 0.5 to allow
for the estimation of standardized effect size and important across
continuous and discrete variables (Gelman, 2008). The day-of-year
(DOY) of first flowering was modeled using linear mixed effects
models for each species separately, with the predictor variables
modeled as additive fixed effects, and station as a hierarchical effect
with variable intercepts to account for site-specific differences and
pseudo-replication (Goodrich et al., 2020). We extracted slope
coefficients (fixed effects) from thesemodels to compare the relative
importance of the phenology predictors to one another and across
species, andmedian r2 values from across the posterior distribution
to estimate the absolute improvement inmodel fit of variousmodel
terms.
(2) In quantifying the drivers of phenology as described
previously, we found support for temperature as the dominant
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driver of phenology in this system. As a first test of whether
phenological responses to temperature have changed fundamen-
tally over the course of the study, we quantified how surprising
phenological patterns in the second half of the dataset (after the
onset of climate change; 1972–2021) are compared to what was
observed in the first half (preclimate change; 1921–1971). We did
this by assessing the improvement in forecast skill (Dietze, 2017)
that was achieved by the second half of the dataset. For each species,
we quantified forecast skill improvement as the percent change of
the root-mean-square error (RMSE) of a linear model of DOY as a
function of temperature trained on the 1921–1971 data and
evaluated on the 1972–2021 data and theRMSEof the samemodel
trained and evaluated on the 1972–2021 data. To obtain one
metric of forecast skill improvement, we also calculated themean of
the RMSE estimates across all species.
(3) To assess evidence of nonlinearities in species’ responses to
temperature, we contrasted models where temperature was
modeled in various nonlinear ways, using the mean squared error
and AIC of the models as decision criteria. To be both conservative
and also maximize the comparability of models (since some
nonlinear modeling approaches struggle to fitmodels with as many
terms as are present in our models above), we first fit linear (not
mixed effects) models to all explanatory variables in part 1 above,
excluding temperature. We then modeled the residuals of these
models against: (a) temperature; (b) temperature and its quadratic;
(c) temperature and its cubic; and (d) temperature as a saturating
exponential decay. Finally, we repeated our models from part (1)
but with an interaction term between whether a sample was
observed in the years after 2010 and the temperature and
precipitation terms already incorporated in that model. This tests
whether this more recent period, during which the impacts of
climate change have been more pronounced, is causing a shift in
how individual species are responding.
(4) To test for changes in phenological dispersion over time and in
warmer years, we follow Pearse et al. (2017) in fittingmodels which
explicitly estimated heteroskedasticity by modeling variance as a
function of time and annual temperature. Specifically, we fit
Bayesian hierarchical models using brms (B€urkner, 2017) with the
equivalent formulation as in part (1), where the average response
(l) of DOY varies additively as a function of the explanatory, and
each station has a hierarchically drawn estimate for its mean. We
thenmodeled, in two separatemodels, the variance in response (r2)
as a function of time and temperature and the same hierarchical
intercept structure to account for variance differences by station.
We note that this modeling formulation is conservative because
temperature always appears in the l term, and inclusion of the
hierarchical term in both the l and r2 formulas accounts for
changes in station coverage. We used a Gaussian identity link
function for the r2 coefficients in order to report variance changes
in units of d yr�1 and d °C�1. Models were run for four chains and
2000 iterations each using default noninformative priors and were
checked for convergence.
(5) Additionally, we investigate whether the responses we see
through time can be partitioned into variation associated with
broader environmental adaptation (per site), overall annual climate
change (constant across all sites), and year-to-year variation at each

site within the context of this variation. In doing this, we follow
Daru et al. (2019) and estimate the mean temperature/precipita-
tion at each site, the annual trend in temperature/rainfall through
time across all sites, and finally the difference in temperature/
rainfall at each site in each year from the previous two summed
together. We then fit these additional terms in a model following
the procedure outlined in (3). We present these results in Notes S2
and note that, in all cases bar the models where the explanatory
variables were not normalized, we find that the site-level terms are
greater (and thus more important; see argument above) than the
annual terms, which are themselves greater than the site-level
variation. We suggest the unstandardized terms are not the best
choice for interpretation, since standardization helps address co-
linearity issues which may occur in such time-series data, but
regardless note that the pattern is present in unscaled data for all
species except black locust and acacia regardless.
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Fig. S1 Standardized effect sizes of the drivers of interannual
variation in flowering phenology.

Fig. S2One hundred years of first flowering dates in seven species
across the Korean Peninsula and islands.

Fig. S3One hundred years of mean temperature and precipitation
data across the sites within the Korean Peninsula and islands.

Notes S1Outputs frommodels of all species against all explanatory
variables, both scaled (to estimate the relative importance of
variables) and unscaled.

Notes S2 Outputs from models partitioning variation in tempera-
ture and precipitation among sites, time, and within-site variation.

Notes S3 Outputs from linear and nonlinear models to assess
support for saturation/nonlinearity of species’ functional responses
to temperature.

Notes S4 Outputs from models testing for differences in species’
responses post-2010.

Notes S5Outputs fromBayesian hierarchicalmodels with variance
terms accounting for correlated changes in variation with year.

Notes S6Outputs from Bayesian hierarchical models with variance
terms allowing for correlated changes in variation with temperature.

Notes S7 Forecast and hindcast predictions from models, along
with within-sample model results.

Notes S8 Compressed archive of all analysis codes.

Notes S9 Raw data provided to us by the Korean Meteorological
Agency.

Notes S10 Information about sites.
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